Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Gen Comp Endocrinol ; 278: 50-57, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30077792

RESUMO

There is much interest in targeting neuropeptide signaling for the development of new and environmentally friendly insect control chemicals. In this study we have focused attention on the peptidergic control of the adult crop of Delia radicum (cabbage root fly), an important pest of brassicas in European agriculture. The dipteran crop is a muscular organ formed from the foregut of the digestive tract and plays a vital role in the processing of food in adult flies. We have shown using direct tissue profiling by MALDI-TOF mass spectrometry that the decapeptide myosuppressin (TDVDHVFLRFamide) is present in the crop nerve bundle and that application of this peptide to the crop potently inhibits the spontaneous contractions of the muscular lobes with an IC50 of 4.4 × 10-8 M. The delivery of myosuppressin either by oral administration or by injection had no significant detrimental effect on the adult fly. This failure to elicit a response is possibly due to the susceptibility of the peptide to degradative peptidases that cleave the parent peptide to inactive fragments. Indeed, we show that the crop of D. radicum is a source of neuropeptide-degrading endo- and amino-peptidases. In contrast, feeding benzethonium chloride, a non-peptide agonist of myosuppressin, reduced feeding rate and increased the rate of mortality of adult D. radicum. Current results are indicative of a key role for myosuppressin in the regulation of crop physiology and the results achieved during this project provide the basis for subsequent studies aimed at developing insecticidal molecules targeting the peptidergic control of feeding and food digestion in this pest species.


Assuntos
Estruturas Animais/anatomia & histologia , Brassica/parasitologia , Dípteros/anatomia & histologia , Sequência de Aminoácidos , Estruturas Animais/inervação , Animais , Dípteros/fisiologia , Contração Muscular , Peptídeo Hidrolases/metabolismo , Peptídeos/química
2.
Mem. Inst. Oswaldo Cruz ; 113(3): 178-184, Mar. 2018. graf
Artigo em Inglês | LILACS | ID: biblio-894904

RESUMO

BACKGROUND Members of the Bacteroides fragilis group are the most important components of the normal human gut microbiome, but are also major opportunistic pathogens that are responsible for significant mortality, especially in the case of bacteraemia and other severe infections, such as intra-abdominal abscesses. Up to now, several virulence factors have been described that might explain the involvement of B. fragilis in these infections. The secretion of extracellular membrane vesicles (EMVs) has been proposed to play a role in pathogenesis and symbiosis in gram-negative bacteria, by releasing soluble proteins and other molecules. In B. fragilis, these vesicles are known to have haemagglutination and sialidosis activities, and also contain a capsular polysaccharide (PSA), although their involvement in virulence is still not clear. OBJECTIVE The aim of this study was to identify proteins in the EMV of the 638R B. fragilis strain by mass spectrometry, and also to assess for the presence of Bfp60, a surface plasminogen (Plg) activator, previously shown in B. fragilis to be responsible for the conversion of inactive Plg to active plasmin, which can also bind to laminin-1. METHODS B. fragilis was cultured in a minimum defined media and EMVs were obtained by differential centrifugation, ultracentrifugation, and filtration. The purified EMVs were observed by both transmission electron microscopy (TEM) and immunoelectron microscopy (IM). To identify EMV constituent proteins, EMVs were separated by 1D SDS-PAGE and proteomic analysis of proteins sized 35 kDa to approximately 65 kDa was performed using mass spectrometry (MALDI-TOF MS). FINDINGS TEM micrographs proved the presence of spherical vesicles and IM confirmed the presence of Bfp60 protein on their surface. Mass spectrometry identified 23 proteins with high confidence. One of the proteins from the B. fragilis EMVs was identified as an enolase P46 with a possible lyase activity. MAIN CONCLUSIONS Although the Bfp60 protein was not detected by proteomics, α-enolase P46 was found to be present in the EMVs of B. fragilis. The P46 protein has been previously described to be present in the outer membrane of B. fragilis as an iron-regulated protein.


Assuntos
Bacteroides fragilis/enzimologia , Bacteroides fragilis/ultraestrutura , Eletroforese em Gel de Poliacrilamida , Fosfopiruvato Hidratase , Plasminogênio , Vesículas Extracelulares
3.
Mem Inst Oswaldo Cruz ; 113(3): 178-184, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29412357

RESUMO

BACKGROUND: Members of the Bacteroides fragilis group are the most important components of the normal human gut microbiome, but are also major opportunistic pathogens that are responsible for significant mortality, especially in the case of bacteraemia and other severe infections, such as intra-abdominal abscesses. Up to now, several virulence factors have been described that might explain the involvement of B. fragilis in these infections. The secretion of extracellular membrane vesicles (EMVs) has been proposed to play a role in pathogenesis and symbiosis in gram-negative bacteria, by releasing soluble proteins and other molecules. In B. fragilis, these vesicles are known to have haemagglutination and sialidosis activities, and also contain a capsular polysaccharide (PSA), although their involvement in virulence is still not clear. OBJECTIVE: The aim of this study was to identify proteins in the EMV of the 638R B. fragilis strain by mass spectrometry, and also to assess for the presence of Bfp60, a surface plasminogen (Plg) activator, previously shown in B. fragilis to be responsible for the conversion of inactive Plg to active plasmin, which can also bind to laminin-1. METHODS: B. fragilis was cultured in a minimum defined media and EMVs were obtained by differential centrifugation, ultracentrifugation, and filtration. The purified EMVs were observed by both transmission electron microscopy (TEM) and immunoelectron microscopy (IM). To identify EMV constituent proteins, EMVs were separated by 1D SDS-PAGE and proteomic analysis of proteins sized 35 kDa to approximately 65 kDa was performed using mass spectrometry (MALDI-TOF MS). FINDINGS: TEM micrographs proved the presence of spherical vesicles and IM confirmed the presence of Bfp60 protein on their surface. Mass spectrometry identified 23 proteins with high confidence. One of the proteins from the B. fragilis EMVs was identified as an enolase P46 with a possible lyase activity. MAIN CONCLUSIONS: Although the Bfp60 protein was not detected by proteomics, α-enolase P46 was found to be present in the EMVs of B. fragilis. The P46 protein has been previously described to be present in the outer membrane of B. fragilis as an iron-regulated protein.


Assuntos
Bacteroides fragilis/enzimologia , Vesículas Extracelulares/enzimologia , Fosfopiruvato Hidratase/análise , Bacteroides fragilis/ultraestrutura , Eletroforese em Gel de Poliacrilamida , Vesículas Extracelulares/ultraestrutura , Humanos , Laminina , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica , Fosfopiruvato Hidratase/metabolismo , Plasminogênio
4.
PLoS One ; 12(11): e0188021, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29125862

RESUMO

Neuropeptides play an important role in the regulation of feeding in insects and offer potential targets for the development of new chemicals to control insect pests. A pest that has attracted much recent attention is the highly invasive Drosophila suzukii, a polyphagous pest that can cause serious economic damage to soft fruits. Previously we showed by mass spectrometry the presence of the neuropeptide myosuppressin (TDVDHVFLRFamide) in the nerve bundle suggesting that this peptide is involved in regulating the function of the crop, which in adult dipteran insects has important roles in the processing of food, the storage of carbohydrates and the movement of food into the midgut for digestion. In the present study antibodies that recognise the C-terminal RFamide epitope of myosuppressin stain axons in the crop nerve bundle and reveal peptidergic fibres covering the surface of the crop. We also show using an in vitro bioassay that the neuropeptide is a potent inhibitor (EC50 of 2.3 nM) of crop contractions and that this inhibition is mimicked by the non-peptide myosuppressin agonist, benzethonium chloride (Bztc). Myosuppressin also inhibited the peristaltic contractions of the adult midgut, but was a much weaker agonist (EC50 = 5.7 µM). The oral administration of Bztc (5 mM) in a sucrose diet to adult female D. suzukii over 4 hours resulted in less feeding and longer exposure to dietary Bztc led to early mortality. We therefore suggest that myosuppressin and its cognate receptors are potential targets for disrupting feeding behaviour of adult D. suzukii.


Assuntos
Produtos Agrícolas , Drosophila/fisiologia , Controle Biológico de Vetores , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...